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ABSTRACT 
 
When designing camouflage it is important to understand how the human visual system processes the information to 
discriminate the target from the background scene. A vision model has been developed to compare two images and 
detect differences in local contrast in each spatial frequency channel. Observer experiments are being undertaken to 
validate this vision model so that the model can be used to quantify the relative significance of different factors affecting 
target conspicuity. Synthetic imagery can be used to design improved camouflage systems. The vision model is being 
used to compare different synthetic images to understand what features in the image are important to reproduce 
accurately and to identify the optimum way to render synthetic imagery for camouflage effectiveness assessment. This 
paper will describe the vision model and summarise the results obtained from the initial validation tests. The paper will 
also show how the model is being used to compare different synthetic images and discuss future work plans. 
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1. INTRODUCTION 

 
In order to understand what makes an object detectable it is essential that the human visual system processes are 
understood.  When there is an understanding of the relative significance, to these processes, of the different factors 
affecting target conspicuity it will be possible to design more effective camouflage systems. The approach adopted here 
has been to develop a computational vision model to evaluate the perceived differences between subtly different images. 
A model of visual difference prediction based on multi-scale analysis of local contrast has been developed and tested 
with psychophysical discrimination experiments on natural-scene stimuli. The model carries out a multiresolution 
analysis of the two pictures and detects differences in local contrast in each spatial frequency “channel”.  The model can 
account for perceived differences by combining differences in the luminance domain and in two opponent chromatic 
domains.  A variety of psychophysical experiments, measuring thresholds for discriminating small changes in 
naturalistic images, have been undertaken to validate the model. 
 
The vision model operates on images. Computer graphics can be used to produce synthetic imagery for a variety of 
applications. For example the UK has developed the physically accurate scene generation system CameoSim to evaluate 
the effectiveness of different camouflage systems[1, 2]. Synthetic images of different types of scene can be created to 
visualise the effect of different camouflage schemes under different conditions. In this way it is possible to design and 
evaluate new systems prior to production. 
 
The vision model is currently being used to compare different natural images in order to better understand the 
significance of different aspects of the synthetic image generation process. This will mean that appropriate images can 
be generated for different applications. In addition, the model is being used to understand the different features that 
affect target detection, identification and recognition so that more effective camouflage systems can be designed. 
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This paper will describe the vision model and the initial validation tests undertaken. The paper will also describe how 
the model is being used to compare different synthetic images to understand the factors affecting target conspicuity. 

 
2. VISION MODEL 

2.1.  Description of model 
This computational vision model of visual difference prediction is based on multi-scale analysis of local contrast in each 
spatial frequency ‘channel’ and has been extended to account for differences in the chromatic domain.  
 
The model is based on knowledge of primary visual cortex and has much similarity with other models [3,4,5,6,7,8]. These 
models recognise that a visual image is processed in parallel (at least in the early stages of visual cortex processing) by 
channels or neurons with different optimal spatial frequencies but all with much the same bandwidth of about one 
octave[9,10,11,12,13].  
 
The contrast at each point in an image, at each of several spatial frequency scales [14,15,16,17] is calculated. The contrast at 
the point (x,y) and in the frequency band F is defined as:  
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Where aF(x,y) is a bandpass filtered version of the original image convolved with a circularly-symmetric filter with 
frequency response given by: 
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While lF(x,y) is the result of convolving the original image with a circularly-symmetric low pass operator with 
frequency response given by:  
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Where f is spatial frequency and σ is the spread of the Gaussian frequency-response curves, and is chosen to be 0.3F so 
that the bandpass filters have a bandwidth of about one octave. Division of the bandpassed convolution by lF (the local 
mean luminance) is a model of the fact that the visual system encodes contrast rather than luminance per se; the mean 
luminance is calculated over an area proportional to the period of F.  
 
To model how the visual system compares two images, the contrast CF(x,y) for both images at all frequency scales is 
then calculated, and the contrasts in the two images, point by point within each frequency band are compared. The 
absolute value of the difference in contrast between the two pictures under comparison at each location and in each 
frequency band is calculated thus:  
 
                                                             ),(),(),( 0,,, yxCyxCyxC FjFjF −=∆                                                   (4) 

 
where j is the picture number of the test stimulus and j=0 represents the reference picture.  
  
How each value of ∆C contributes towards the visibility of the difference between the pictures is estimated by 
evaluating each ∆C value against the “dipper function” for contrast discrimination for sinusoidal gratings [18,19,20]. Figure 
1 shows a contrast discrimination function. Each value of ∆CF(x,y) is treated as if it is the contrast increment of a 
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sinusoidal grating of frequency F to be compared against a reference or pedestal grating whose Michelson contrast is the 
average of the paired contrast values in the two pictures at that location and frequency band.  
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Figure 1. On the left is one observer’s CSF – measures of the sensitivity for detecting the contrast of gratings. The sensitivity at a 
given spatial frequency determines the location of the contrast discrimination “dipper” on x and y axes.  

 
 
The observer’s contrast discrimination functions for achromatic gratings were estimated indirectly by adjusting the 
position on the x-axis (contrast reference) and y-axis (contrast difference) of a “dipper function” template for contrast 
discrimination according to the observer’s contrast detection thresholds measured for a similar grating [21]. Thus, the 
model dipper functions were determined from each observer’s contrast sensitivity functions (CSFs). Any differences 
between observer’s abilities to discriminate between pictures should be accounted for by differences in their CSFs. Note 
that the linear, “Weber” part of the dipper function has a slope of only 0.7 on log/log axes rather than unity [18]. 
 
A measure (V) of how different two pictures might be at a single location and in a single frequency band is given by 
how far the calculated ∆C is above or below the dipper. For any image pair there will be thousands of minute cues to 
discrimination, at the many locations and in the several frequency bands.  

2.2.  Pooling receptors and channels together.  
The second stage in the model is to pool the many cues (V) provided at different locations and different frequency bands 
to give an overall assessment of whether or not the two pictures differ sufficiently for discrimination to be made. A 
weighted average of all the V cues, weighted across all locations and all frequency bands, is computed so that there is a 
single metric for a given pair of pictures rather than one measure per frequency band. A Minkowski sum with power of 
4 is used [5]. The power of 4 derives from an empirical description of the amount of probability summation seen in 
grating detection experiments and relates to the steepness of the psychometric function [22, 23]. It has been assumed that 
the same weighting will apply to contrast discrimination experiments. Thus, an overall cue V4 is given by:  
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V4 is a single parameter that can be adjusted in order to optimize the fit of the model to many experimental threshold 
data.  
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2.3. Chromatic model 
Human vision processes luminance (brightness) information and colour information separately and in parallel [24], and 
the colour information is processed in red-green and blue-yellow opponent channels [25]. Therefore the model has been 
developed with three planes: a luminance plane, and red-green and yellow-blue colour opponent planes. 
 
The coloured images (in a conventional RGB format) are first transformed in order to calculate how the three cone types 
of human vision (L, M and S) would respond to the images. The luminance signal is then taken as the sum of L+M, 
whereas the red-green opponent signal is taken as L/(L+M) as in Macleod and Boynton’s [1979] colour space. By 
analogy, the blue-yellow opponent signal is calculated as S/(L+M).  
 
The image discrimination model is run three times on each pair of colour images to get the overall discrimination 
variable V4 for the luminance plane of the images and for the red-green and yellow blue planes. Sensitivity for colour 
signals is biased towards low spatial frequencies compared to luminance signals. The criterion values of V4 for 
luminance and the two colour channels are allowed to vary separately in the optimisation to fit an observer’s 
experimental data. The observer’s ability to discriminate two images is set by the highest value of the three V4 estimates 
(after accounting for their different criterion values).  

 
3. A PSYCHOPHYSICAL EXPERIMENT  

3.1.  Initial model validation 
Models must be validated against real psychophysical experimental data to determine how well they explain human 
discrimination performance. Generally, such validation has been carried out against psychophysical experiments 
performed with sinusoidal gratings. Our initial validation tests created images using  a morphing technique because it 
produces a set of stimuli where each one of the component pictures is an image of a plausible object (with slightly 
different shape, colour and texture); each morphed image still shares the natural Fourier statistics of the original ones 
[26]. 
 
Experiments were undertaken in which human observers attempt to discriminate small changes in the shape, brightness, 
texture and colour of images of fruit. The observers’ real thresholds were compared with those predicted by the low-
level model of visual cortex processing. The purpose of this experiment was to obtain a large set of image-
discrimination data on which the model could be optimised. In order to achieve this, two sets of images were produced. 
The first set was of a yellow lemon morphing gradually into a red pepper, all on the same background of leaves with 
dappled illumination. The morph from one fruit to the other was conducted in 40 steps, so that there were 41 images in a 
sequence. Figure 2 shows typical basic stimuli (only 9 of the 40 steps are shown).  The second image set was produced 
by morphing a blue (re-coloured) pepper into the yellow lemon. In an experiment, a computer-controlled procedure 
determined how much morphing (in %) was needed for an observer to discriminate the initial pepper image from a 
morphed image. 
   
The morphed image set was subjected to various filtering operations so that, in all, 49 different stimulus sequences were 
obtained. A two-alternative forced-choice technique determined, for each of the 49 conditions, how much a filtered 
stimulus needed to be morphed in order for reliable discrimination (75% correct) from the parent pepper image [27]. In a 
single trial there were three time intervals of 0.5 seconds each. The observers were free to look at whichever part of the 
image they wished and they were free to make eye movements within the 0.5 second image presentations. The middle 
interval was always known by the observer to contain a parent image. The first or third interval (chosen randomly) 
would also contain that same image, but the third or first interval (respectively) would contain the morphed image. The 
observer’s task was to inform the computer, using a button press, whether the first or third interval contained the 
different image. If the observer chose the wrong interval too frequently the task was made easier by choosing a morphed 
image more different than the parent; if the observer chose the correct interval too frequently, the task was made harder. 
Thus, during an experiment the ‘staircase’ converged on that percentage of morph which the observer could correctly 
identify approximately 75% of the time. The red-green morph sequences were from lemon to pepper, but the blue-
yellow sequences were from bluish-pepper to lemon. 
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Figure. 2. Examples of morphed images, a lemon (top-left) is gradually morphed into a pepper (bottom-right). 
 
The thresholds for the 49 conditions are mostly similar, except that performance was worst (higher thresholds) where 
either the luminance or the colour opponent planes, or both, had been subject to extreme filtering. Observers were 
relatively poor at discriminating changes in the image when the colour information had been sharpened or edge 
enhanced while the luminance information was blurred. This is consistent with the finding that the human visual system 
performs optinally with low spatial-frequency colour information (i.e. not sharpened) and high spatial frequency 
luminance information (i.e. not blurred) [28]. 
 
The model was applied to the image set used in the psychophysical experiment.  In general, its performance matched the 
experimental results. The model predicts that human thresholds should rise where either the luminance or the color 
planes, or both, are highly filtered. However, the model predicted that the human observer should be even worse at 
discriminations for which they are poor, but even better for those stimuli for which their performance was good.  
 
3.2. Further model validation 
 
The results from the first experiment were used to refine the observer trial procedure and improve the image dataset. 
Therefore additional observer tests have been undertaken to compare 450 image pairs derived from colour photographs 
of everyday scenes and objects such as shown in Figure 3. Some of the pairs consisted of two photographs of the same 
scene taken under different weather conditions or with objects or people in different locations; but some of the pairs 
were made by artificially manipulating the colour, the focus or other properties in a single photograph.  In these tests the 
observer was asked to fixate on a small spot in the centre of the screen. The results predicted by the model are plotted 
against the average of two observer ratings in Figure 4. This shows a relatively high degree of correlation between the 
measured and predicted image difference values with a correlation coefficient of 0.76. 
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Figure 3. Examples of natural image pairs used for observer test to validate vision model. 
 
 
 

 
 
 
Figure 4. Scatterplot of observer threshold performance against model output (V4) for comparing image pairs of everyday objects and 

scenes. Best line fit is shown in red.
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4. SYNTHETIC IMAGERY 

4.1.  CameoSim 
CameoSim has been developed over a number of years to produce a synthetic, high fidelity, physically accurate radiance 
map of 3D synthetic scenes for a wide range of operational scenarios, at any wavelength between 0.3 and 25 microns.  
Figure 5 shows a flow diagram of the processes involved in creating CameoSim imagery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Flow diagram of the processes involved in producing CameoSim imagery 
 
3D geometry can be imported into the CameoSim format using one of a number of available converters.  These can then 
be manipulated to construct physically accurate representations of the object.  There are three main building blocks: 
geometry, textures and physical materials. Materials based on physical properties can be constructed and applied via 
user-defined textures to the geometry.  The user can define the various properties of an observation system and apply 
physics-based atmospherics.  CameoSim is then able to render the scene and produce inband, hyperspectral and analysis 
imagery.  If the image needs to be re-rendered for a different wavelength, weather, time of day, etc, there is no need to 
reconstruct the objects or materials.  Rather, the user simply swaps the relevant input with another, a process that 
typically takes just seconds.  This makes subsets of images with varying parameters easy to generate. 
 
Within CameoSim there is a programmable sensor degradation facility that can degrade images to account for the optics 
and detector effects typical of a sensor.  If the user requires it, the non-degraded image can be exported and passed to 
third party degradation models for more intensive or specific degradation. 
 
CameoSim was designed as a physically accurate system, and the number of computations to produce an entire image is 
huge.  Therefore, there are approximations and accuracy settings (e.g. rays fired per pixel) available that can produce 
images of various degrees of quality.  The renderer is flexible enough to give the user the freedom to alter many 
parameters in the image generation process to trade fidelity against the time it takes to generate an image. 
 
Inevitably the images created using a fast rendering method together with low fidelity geometric models, textures and 
material properties will be of a lower fidelity than those rendered using the more accurate rendering algorithms and 
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detailed geometric models, textures and material properties.  The fidelity level and hence the accuracy required will 
depend on what the imagery is to be used for. 
 
4.2.  Image dataset 
 
A set of images was created in which a vehicle (a Landrover) was positioned under trees. The image set was created so 
that the significance of different parameters can be evaluated. The initial image set was created to assess the effects of: 

• Time of day (this creates different shadows and lighting effects) – Figure 6 
• Target position – Figure 7 
• Colour of the vehicle – Figure 8 
• Rendering fidelity – Figure 9 

 
 

     
07:00          10:00                 13:00                             16:00        19:00 

Figure 6. Synthetic images representing different times of day, i.e. different shadow and lighting effects. 
 
 
 

           
       Base   Moved                None                     

Figure 7. Synthetic images representing different target positions. 
 
 

    
   Base(patterned camouflage)     Black                                      Olive        Grey 

Figure 8: Synthetic images representing different colour vehicle. 
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High fidelity   Medium fidelity                               Low fidelity 

Figure 9. Synthetic images created with different rendering methods. 
 
 

5. APPLICATION OF VISION MODEL TO SYNTHETIC IMAGERY 
 
Observer tests have compared each of the images against the others and the results have been compared with the 
differences predicted by the vision model. Initial analysis of the results show good agreement between the relative 
predicted and measured results for different colour vehicle and different rendering fidelity, as shown in Figures 10 and 
11. However, these initial results have shown that the model is overpredicting the effect of shadows and a change in 
position of the vehicle as shown in Figures 12 and 13. 
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Figure 10. Predicted versus measured difference values for images for showing different colour paint schemes on the vehicle. 

 

Proc. of SPIE Vol. 6239  62390R-9

Downloaded from SPIE Digital Library on 26 Jan 2010 to 158.109.9.107. Terms of Use:  http://spiedl.org/terms



 

 

Effect of rendering fidelity
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Figure 11. Predicted versus measured difference values for images rendered at different levels of fidelity. 
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Figure 12. Predicted versus measured difference values for images representing different times of day. 
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Figure 13. Predicted versus measured difference for images representing different Landrover positions. 
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6. CONCLUSIONS AND FUTURE PLANS 
 
The results from analysis of the synthetic imagery are still being analysed as the understanding of the effects has a 
fundamental effect on the interpretation of the results. The results may be because the effects are viewed by peripheral 
vision and are not well seen, or they may be because the effects are capricious ephemeral factors that say nothing about 
the context of the scene. The results are suggesting that when undertaking tasks such as target detection people attach 
less weight to time of day effects and to small displacements, due to how these effects are encoded in the human vision 
process. Further tests will be undertaken to clarify these findings and understand the effect on target conspicuity. 
 
Therefore the vision model, developed to quantify the difference between two serially-presented visual images, is 
identifying important aspects to understand when designing camouflage systems and when creating synthetic imagery 
for military applications. The vision model will allow analysis of imagery to understand what features of a target have 
the greatest effect on detection, recognition and identification by human observers.  Human psychophysical data for a 
natural-image discrimination task is being used to validate the model. The fit, although not perfect, is very promising 
and further validation tests will be undertaken work to test the model against detection performance in a greater variety 
of naturalistic tasks.  
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